
Mental models to support competence in computer programming
Mental models
These are the mind's 'mechanisms' for explaining 
and predicting phenomena. The idea originated 
with Craik in World War II and elaborated by 
Johnson-Laird (2004) amongst others (Simmons, 
Wikipedia).

This is not the same idea as modelling 
phenomena in mathematics or in computer 
programs - such simulation models are 
expressions in external languages, unlike mental 
models, which are private to our minds: 
interconnected, fluid, faulty and ultimately 
unknowable. When we create and communicate 
external expressions in natural or formal 
language, this leads to the possibility of proof, 
execution and formal reasoning in a shared world 
of knowledge. But these external expressions 
aren't mental models: they are in a linguistic form 
that can be interpreted by others and in formal 
cases, by machines.

Nevertheless he unknowable internal mental 
model remains a useful notion, and is applied 
here to the design thinking needed for effective 
courses, materials, pedagogy, software, 
assessment to teach programming.

 

References
Johnson-Laird, P.N. (2004) The history of mental models. In Manktelow, K., and Chung, M.C. (Eds.) 
Psychology of Reasoning: Theoretical and Historical Perspectives. New York: Psychology Press. Pp. 179-212.
Simmons, M. (2017) The Top 12 Most Useful & Universal Mental Models, 
medium.com/the-mission/this-is-exactly-how-you-should-train-yourself-to-be-smarter-infographic-86d0d42ad41c
Wikipedia (2018) Mental Model, en.wikipedia.org/wiki/Mental_model
Waite, J. (2018) Personal Communication

The microworld is the concept of a limited 'space', 
designed to suit a particular class of problems and 
usually with an 'object to think with'. The turtle geometry 
microworld is the most famous, but not the first in Logo. 
Before that came sentence construction using lists of 
words to manufacture amusing nonsense! Making a 
mental model of a microworld's affordances allows the 
learner to map solutions to problems and to relate to the 
notional machine and the programming language, within 
a limited but meaningful domain.

This mental model allows the learner to reason about the problem itself - it may 
develop as the learner combines problem solving and design to make a 
solution. Sometimes prior knowledge can help; for example, Papert would 
argue that children enjoy, are competent and have mental models about the 
way their body can move in the physical world. If a problem is aligned to such 
competence, they can more effectively debug their program (body syntonic) 
and feel engaged with the challenge (ego syntonic).

This mental model is about the parts of the language - 
the distinctions between different linguistic components 
and their connection to create programs. Scratch 
supports this mental model by categorising statements 
and thus offers recognition rather than recall. It also 
reinforces appropriate syntactical combinations, so that 
the focus is on their meaning, in isolation and in 
combination.

The mental model here is of a complex user interface to understand and write programs, manage program files, 
debug programs and produce results. Sometimes it spans several computer applications, such as an editor, file 
manager and version control, and sometimes it can be combined in one place, as with Scratch. It is the interactive 
development environment (IDE) which can help or hinders the user in forming the mental models of programming 
language, notional machine and microworld through visualisation and interactivity.

The notional machine is a 
mental model concerned 
with the variables, computer 
memory (for data and 
program), 'program counter' 
- a hidden variable that 
determines which statement 
is executed next and thus 
flow of control. It is much 
more complex with Scratch 
than in the past, since 
multiple parallel process are 
readily designed using 
sprites. The design of 
solutions in this way can be 
quite different from that 
made with single process 
thread programming, but 
makes the mental model 
challenging.

notional 
machine

How do I 
represent key 
problem 
variables & 
processes?

What data structures, 
algorithms & 

statements are 
available to map on to 

the problem? When statements 
are executed, 

what is modified 
in what order?

How are changes 
in the notional 

machine seen?

How does behaviour 
in the microworld 
offer a solution?

What parts of the 
notional machine 

link to the 
microworld?

Does the problem 
fit the 
microworld? interactive 

development 
environment

What outputs 
and changes will 
happen in 
response to the 
program?

problem 
comprehension

programming 
language

microworld / 
domain

‘Mental models to support competence in computer programming’ by Richard Millwood is licensed under a Creative Commons 
Attribution-Share Alike 2.0 License. Based on a work at blog.richardmillwood.net January 2018 and revised for presentation at the 
London Computing Education Research Symposium, January 2018.

http://mentalmodels.princeton.edu/papers/2005HistoryMentalModels.pdf
https://medium.com/the-mission/this-is-exactly-how-you-should-train-yourself-to-be-smarter-infographic-86d0d42ad41c

